Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2752: 215-226, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38194037

RESUMO

Laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) is a well-established and sensitive analytical technique, which provides high-resolution imaging of endogenous elements, element tagged-markers, metal-containing nanoparticles, and metallodrugs within cells. Here we describe a protocol for imaging the subcellular distribution of platinum within A549 cells, following their incubation with the platinum-based anticancer agent, Oxaliplatin. We outline the essential steps in sample preparation and instrumental setup and discuss how the current generation of low-dispersion instruments facilitates new approaches to data acquisition and image processing. The protocol described herein can be easily adapted for other cell lines and metal-containing labeling agents.


Assuntos
Diagnóstico por Imagem , Terapia a Laser , Análise Espectral , Processamento de Imagem Assistida por Computador , Platina , Espectrometria de Massas
2.
Rapid Commun Mass Spectrom ; 34(21): e8906, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32700418

RESUMO

RATIONALE: Malignant pleural mesothelioma is an extremely aggressive and incurable malignancy associated with prior exposure to asbestos fibres. Difficulties remain in relation to early diagnosis, notably due to impeded identification of asbestos in lung tissue. This study describes a novel laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) imaging approach to identify asbestos within mesothelioma models with clinical significance. METHODS: Human mesothelioma cells were exposed to different types of asbestos fibres and prepared on plastic slides for LA-ICP-MS analysis. No further sample preparation was required prior to analysis, which was performed using an NWR Image 266 nm laser ablation system coupled to an Element XR sector-field ICP mass spectrometer, with a lateral resolution of 2 µm. Data was processed using LA-ICP-MS ImageTool v1.7 with the final graphic production made using DPlot software. RESULTS: Four different mineral fibres were successfully identified within the mesothelioma samples based on some of the most abundant elements that make up these fibres (Si, Mg and Fe). Using LA-ICP-MS as an imaging tool provided information on the spatial distribution of the fibres at cellular level, which is essential in asbestos detection within tissue samples. Based on the metal counts generated by the different types of asbestos, different fibres can be identified based on shape, size, and elemental composition. Detection of Ca was attempted but requires further optimisation. CONCLUSIONS: Detection of asbestos fibres in lung tissues is very useful, if not necessary, to complete the pathological dt9iagnosis of asbestos-related malignancies in the medicolegal field. For the first time, this study demonstrates the successful application of LA-ICP-MS imaging to identify asbestos fibres and other mineral fibres within mesothelioma samples. Ultimately, high-resolution, fast-speed LA-ICP-MS analysis has the potential to be integrated into clinical workflow to aid earlier detection and stratification of mesothelioma patient samples.


Assuntos
Amianto , Neoplasias Pulmonares , Espectrometria de Massas/métodos , Mesotelioma Maligno , Microscopia/métodos , Amianto/análise , Amianto/química , Linhagem Celular Tumoral , Humanos , Lasers , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Mesotelioma Maligno/diagnóstico por imagem , Mesotelioma Maligno/patologia
3.
Anal Chem ; 92(14): 9847-9855, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32545955

RESUMO

The use of a low aerosol dispersion ablation chamber within a laser ablation inductively coupled plasma mass spectrometer (LA-ICP-MS) setup allows for high-resolution, high-speed imaging of the distribution of elements within a sample. Here we show how this enhanced capability creates new analytical problems and solutions. We report the distribution of platinum at the cellular level in non-small cell lung cancer (NSCLC) explant models after treatment with clinically relevant doses of cisplatin. This revealed for the first time a correlation between the platinum signal and the presence of carbon deposits within lung tissue. We show how complementary ion beam analysis techniques, particle-induced X-ray emission (PIXE) and elastic backscattering spectrometry (EBS), can be used to explore potential matrix effects in LA-ICP-MS data. For these samples, it was confirmed that the enhancement was unlikely to have resulted from a matrix effect alone. Thus, the presence of carbon deposits within tissue has potential implications for the effective distribution of the cisplatin drug.


Assuntos
Cisplatino/uso terapêutico , Neoplasias Pulmonares/química , Neoplasias Pulmonares/tratamento farmacológico , Espectrometria de Massas/métodos , Antineoplásicos/uso terapêutico , Carbono/química , Carcinoma Pulmonar de Células não Pequenas , Humanos , Terapia a Laser , Esferoides Celulares , Técnicas de Cultura de Tecidos
4.
Cell Metab ; 30(6): 1075-1090.e8, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31801055

RESUMO

Cell therapy is a promising strategy for treating patients suffering from autoimmune or inflammatory diseases or receiving a transplant. Based on our preclinical studies, we have generated human autologous tolerogenic dendritic cells (ATDCs), which are being tested in a first-in-man clinical trial in kidney transplant recipients. Here, we report that ATDCs represent a unique subset of monocyte-derived cells based on phenotypic, transcriptomic, and metabolic analyses. ATDCs are characterized by their suppression of T cell proliferation and their expansion of Tregs through secreted factors. ATDCs produce high levels of lactate that shape T cell responses toward tolerance. Indeed, T cells take up ATDC-secreted lactate, leading to a decrease of their glycolysis. In vivo, ATDCs promote elevated levels of circulating lactate and delay graft-versus-host disease by reducing T cell proliferative capacity. The suppression of T cell immunity through lactate production by ATDCs is a novel mechanism that distinguishes ATDCs from other cell-based immunotherapies.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Células Dendríticas/imunologia , Tolerância Imunológica , Terapia de Imunossupressão , Ácido Láctico/biossíntese , Animais , Doenças Autoimunes/terapia , Linfócitos T CD4-Positivos/citologia , Células Cultivadas , Células Dendríticas/metabolismo , Feminino , Humanos , Ativação Linfocitária , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Monócitos/imunologia
5.
Anal Chem ; 90(19): 11564-11571, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30207702

RESUMO

The introduction of rapid response laser ablation cells and sample transport technologies to laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) has enabled signal pulse durations for a single laser ablation shot of less than 10 ms. These developments have resulted in marked improvements in analytical throughput, resolution, and sensitivity vital for the generation of large, highly spatially resolved elemental maps. The focus on mapping, particularly bioimaging, has obscured the possibility of applying the sensitivity advantage of rapid response technologies to other LA-ICPMS applications, such as high-precision isotope ratio analysis on multicollector (MC) ICPMS. In this work a commercially available rapid response sample transport system and a conventional configuration were compared for LA-MC-ICPMS analysis. Ablation of known reference materials demonstrated "sensitivity" or sample ion yield of 7-9% using the rapid response sample transport system, more than double that for the conventional setup. This increase in efficiency was demonstrated to improve precision for the Pb isotope ratio analysis of the MPI-DING reference glasses and improve the spatial resolution of Hf isotope ratio analysis of reference zircons.

6.
Anal Chem ; 87(22): 11285-94, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26460246

RESUMO

In recent years, laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS) has gained increasing importance for biological analysis, where ultratrace imaging at micrometer resolution is required. However, while undoubtedly a valuable research tool, the washout times and sensitivity of current technology have restricted its routine and clinical application. Long periods between sampling points are required to maintain adequate spatial resolution. Additionally, temporal signal dispersion reduces the signal-to-noise ratio, which is a particular concern when analyzing discrete samples, such as individual particles or cells. This paper describes a novel, two-volume laser ablation cell and integrated ICP torch designed to minimize aerosol dispersion for fast, efficient sample transport. The holistic design utilizes a short, continuous diameter fused silica conduit, which extends from the point of ablation, through the ICP torch, and into the base of the plasma. This arrangement removes the requirement for a dispersive component for argon addition, and helps to keep the sample on axis with the ICP cone orifice. Hence, deposition of sample on the cones is theoretically reduced with a resulting improvement in the absolute sensitivity (counts per unit mole). The system described here achieved washouts of 1.5, 3.2, and 4.9 ms for NIST 612 glass, at full width half, 10%, and 1% maximum, respectively, with an 8-14-fold improvement in absolute sensitivity, compared to a single volume ablation cell. To illustrate the benefits of this performance, the system was applied to a contemporary bioanalytical challenge, specifically the analysis of individual biological cells, demonstrating similar improvements in performance.


Assuntos
Lasers , Espectrometria de Massas/instrumentação , Espectrometria de Massas/métodos , Linfócitos T Reguladores/citologia , Gadolínio/química , Humanos
7.
J Immunol ; 193(5): 2600-8, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25057005

RESUMO

Administering immunoregulatory cells to patients as medicinal agents is a potentially revolutionary approach to the treatment of immunologically mediated diseases. Presently, there are no satisfactory, clinically applicable methods of tracking human cells in patients with adequate spatial resolution and target cell specificity over a sufficient period of time. Laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS) represents a potential solution to the problem of detecting very rare cells in tissues. In this article, this exquisitely sensitive technique is applied to the tracking of gold-labeled human regulatory macrophages (Mregs) in immunodeficient mice. Optimal conditions for labeling Mregs with 50-nm gold particles were investigated by exposing Mregs in culture to variable concentrations of label: Mregs incubated with 3.5 × 10(9) particles/ml for 1 h incorporated an average of 3.39 × 10(8) Au atoms/cell without loss of cell viability. Analysis of single, gold-labeled Mregs by LA-ICP-MS registered an average of 1.9 × 10(5) counts/cell. Under these conditions, 100% labeling efficiency was achieved, and label was retained by Mregs for ≥36 h. Gold-labeled Mregs adhered to glass surfaces; after 24 h of culture, it was possible to colabel these cells with human-specific (154)Sm-tagged anti-HLA-DR or (174)Yb-tagged anti-CD45 mAbs. Following injection into immunodeficient mice, signals from gold-labeled human Mregs could be detected in mouse lung, liver, and spleen for at least 7 d by solution-based inductively coupled plasma mass spectrometry and LA-ICP-MS. These promising results indicate that LA-ICP-MS tissue imaging has great potential as an analytical technique in immunology.


Assuntos
Ouro/farmacologia , Lasers , Antígenos Comuns de Leucócito/imunologia , Pulmão , Espectrometria de Massas/instrumentação , Monócitos , Animais , Anticorpos Monoclonais Murinos , Xenoenxertos , Humanos , Antígenos Comuns de Leucócito/química , Pulmão/citologia , Pulmão/imunologia , Camundongos , Camundongos Endogâmicos NOD , Monócitos/citologia , Monócitos/imunologia , Monócitos/transplante
8.
Anal Chem ; 85(22): 10627-34, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24080112

RESUMO

Cellular therapy is emerging as a promising alternative to conventional immunosuppression in the fields of hematopoietic stem cell (HSC) transplantation, autoimmune disease, and solid organ transplantation. Determining the persistence of cell-based therapies in vivo is crucial to understanding their regulatory function and requires the combination of an extremely sensitive detection technique and a stable, long-lifetime cell labeling agent. This paper reports the first application of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to perform single cell detection of T cell populations relevant to cellular immunotherapy. Purified human CD4(+) T cells were labeled with commercially available Gd-based magnetic resonance imaging (MRI) contrast agents, Omniscan and Dotarem, which enabled passive loading of up to 10(8) Gd atoms per cell. In mixed preparations of labeled and unlabeled cells, LA-ICP-MS was capable of enumerating labeled cells at close to the predicted ratio. More importantly, LA-ICP-MS single cell analysis demonstrated that the cells retained a sufficient label to remain detectable for up to 10 days post-labeling both in vitro and in vivo in an immunodeficient mouse model.


Assuntos
Linfócitos T CD4-Positivos/citologia , Rastreamento de Células/métodos , Gadolínio/farmacocinética , Terapia a Laser/métodos , Espectrometria de Massas/métodos , Animais , Linfócitos T CD4-Positivos/fisiologia , Meios de Contraste , Humanos , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos BALB C , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...